Banyak hal yang kelihatannya sulit untuk kecerdasan manusia, tetapi untuk Informatika relatif tidak bermasalah. Seperti contoh: mentransformasikan persamaan, menyelesaikan persamaan integral, membuat permainan catur atau Backgammon. Di sisi lain, hal yang bagi manusia kelihatannya menuntut sedikit kecerdasan, sampai sekarang masih sulit untuk direalisasikan dalam Informatika. Seperti contoh: Pengenalan Obyek/Muka, bermain sepak bola.
Walaupun AI memiliki konotasi fiksi ilmiah yang kuat, AI membentuk cabang yang sangat penting pada ilmu komputer, berhubungan dengan perilaku, pembelajaran dan adaptasi yang cerdas dalam sebuah mesin. Penelitian dalam AI menyangkut pembuatan mesin untuk mengotomatisasikan tugas-tugas yang membutuhkan perilaku cerdas. Termasuk contohnya adalah pengendalian, perencanaan dan penjadwalan, kemampuan untuk menjawab diagnosa dan pertanyaan pelanggan, serta pengenalan tulisan tangan, suara dan wajah. Hal-hal seperti itu telah menjadi disiplin ilmu tersendiri, yang memusatkan perhatian pada penyediaan solusi masalah kehidupan yang nyata. Sistem AI sekarang ini sering digunakan dalam bidang ekonomi, obat-obatan, teknik dan militer, seperti yang telah dibangun dalam beberapa aplikasi perangkat lunak komputer rumah dan video game.
Secara garis besar, AI terbagi ke dalam dua faham pemikiran yaitu AI Konvensional dan Kecerdasan Komputasional (CI, Computational Intelligence). AI konvensional kebanyakan melibatkan metoda-metoda yang sekarang diklasifiksikan sebagai pembelajaran mesin, yang ditandai dengan formalisme dan analisis statistik. Dikenal juga sebagai AI simbolis, AI logis, AI murni dan AI cara lama (GOFAI, Good Old Fashioned Artificial Intelligence). Metoda-metodanya meliputi:
- Sistem pakar: menerapkan kapabilitas pertimbangan untuk mencapai kesimpulan. Sebuah sistem pakar dapat memproses sejumlah besar informasi yang diketahui dan menyediakan kesimpulan-kesimpulan berdasarkan pada informasi-informasi tersebut.
- Petimbangan berdasar kasus
- Jaringan Bayesian
- AI berdasar tingkah laku: metoda modular pada pembentukan sistem AI secara manual
- Jaringan Syaraf: sistem dengan kemampuan pengenalan pola yang sangat kuat
- Sistem Fuzzy: teknik-teknik untuk pertimbangan di bawah ketidakpastian, telah digunakan secara meluas dalam industri modern dan sistem kendali produk konsumen.
- Komputasi Evolusioner: menerapkan konsep-konsep yang terinspirasi secara biologis seperti populasi, mutasi dan “survival of the fittest” untuk menghasilkan pemecahan masalah yang lebih baik.
Dengan sistem cerdas hibrid, percobaan-percobaan dibuat untuk menggabungkan kedua kelompok ini. Aturan inferensi pakar dapat dibangkitkan melalui jaringan syaraf atau aturan produksi dari pembelajaran statistik seperti dalam ACT-R. Sebuah pendekatan baru yang menjanjikan disebutkan bahwa penguatan kecerdasan mencoba untuk mencapai kecerdasan buatan dalam proses pengembangan evolusioner sebagai efek samping dari penguatan kecerdasan manusia melalui teknologi.
Metode pencarian
Metode pencarian dalam tugas akhir ini menggunakan metode yang telah diusulkan oleh beberapa kalangan yang telah kompeten di bidangnya, dan telah dituangkan dalam beberapa buku. Semua metode yang ada dapat dibedakan kedalam dua jenis : pencarian buta/tanpa informasi (blind atau un-informed search) dan pencarian heuristik/dengan informasi (heuristic atau informed search). Setiap metode mempunyai karakteristik yang berbeda-beda dengan kelebihan dan kekurangannya masing-masing. Dalam makalah ini memakai metodeGenerate-and-Test (GT).
Generate-and-Test (GT) adalah metode yang paling sederhana dalam teknik pencarian heuristik. Jika pembangkitan sebuah solusi yang mungkin (apossible solution) dikerjakan secara sistematis, maka prosedur ini menjamin akan menemukan solusinya. Tetapi, jika ruang masalahnya sangat luas, mungkin memerlukan waktu yang sangat lama. Algoritma GT menggunakan prosedur Depth First Search (DFS) karena suatu solusi harus dibangkitkan secara lengkap sebelum dilakukan Test. Algoritma ini berbentuk sistematis, pencarian sederhana yang mendalam dari suatu ruang permasalahan. GT juga dapat dilakukan pembangkitan secara acak, tetapi tidak ada jaminan solusinya dapat ditemukan. Di dalam GT terdapat dua prosedur penting : Pembangkit (membangkitkan solusi yang mungkin) dan Tes(menguji solusi yang dibangkitkan tersebut). Dengan menggunakan memori yang sedikit, DFS bias digunakan sebagai prosedur Pembangkit yang menghasilkan suatu solusi. Prosedur Tes bisa menggunakan fungsi heuristik.
Depth-First Search (DFS), Pencarian dilakukan pada suatu simpul dalam setiap level dari yang paling kiri. Jika pada level yang terdalam belum ditemukan, maka pencarian dilanjutkan pada simpul sebelah kanan dan simpul sebelah kiri dapat dihapus dari memori. Jika pada level yang paling dalam tidak ditemukan solusi, maka pencarian dapat dilanjutkan pada level sebelumnya. Demikian seterusnya sampai ditemukan solusinya.
Evolusi AI berjalan dalam dua jalur yang berbeda. Pertama, untuk menciptakan sistem komputer yang meniru prosesberpikir manusia untuk menyelesaikan permasalahan umum. Misalnya program permainan catur. Kedua, mengkombinasikan pemikiran terbaik para ahli pada sepotong software yang dirancang untuk memecahkan persoalan yang spesifik. Biasanya disebut juga dengan expert system, atau sistem pakar. Misalnya bagaimana seorang dokter menentukan penyakit seseorang, mulai dari tanya jawab, pemeriksaan kondisi tubuh seperti mata, tekanan darah, suhu tubuh dan sebagainya. Langkah-langkah ini pula yang berusaha diterapkan ke komputer yang mampu berpikir seperti pakar tersebut.
sumber :
ittelkom.ac.id/AI
wikipedia/AI
total.or.id/AI